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INTRODUCTION

Deepfake audio is the use of Deep Learning algorithms, to manipulate speech content or even create fake sound voices. Deepfake Audio detection is getting more crucial as
human ears are being fooled easily by fake audios in their daily lives, since the fake audio does keep linguistic features, such as breathing or emotion.

It is essential to provide a handful of tools to identify fabricated audio, and to prevent Deepfake audio spreading out misinformation or threatening voice-abled authentication
systems. poME 2
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Figure 1. News snippets about Deepfake audio

PROPOSED MODEL

Our assumption:

The non-speech parts such as silence segments in the low-frequency sub-band should contain more essential discriminate information than
the voice parts.
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Figure 2. lllustration of the spectrogram of low-frequency sub-band (first 50-bins) for both bonafide and spoofing speeches.

We can observe that there is a continuous noise band between the first 10 frequency bins in the real speeches throughout the entire time frame. This noise band occurs in all real speech
samples in the dataset, which should be caused by electronic recording devices.
For the TTS-generated speech, there is no such continuous noise band at the low-frequency range.

For the VC-based fake audio, since they are generated directly using real recording speeches, the electronic noise may or may not be retained depending on the particular architecture of the
VC algorithm.

Following by this idea, we design our anti-spoofing system as seen in Figure 3.VVe only utilize the first 50 frequency bins of the power spectrogram as input.
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Figure 3. The proposed model

DATASET Our model is evaluated on Deepfake Speech (DF) track of ASVspoof2021 Challenge dataset.
- The largest and the most diverse dataset

- 14,869 real speeches and 519,059 synthesized speeches
- Contains more than hundreds of spoofing algorithms across different codecs.

EXPERIMENT & RESULTS CONCLUSION

Table 1. Performance on the ASVspoof2021 DF evaluation set *  We propose a robust GAT-based Deepfake audio detector, utilizing a low-frequency band

as input, to detect fake speech across various conditions. Because of its good robustness

Parameter and usage efficiency, our model, our model has gained a higher possibility of being applied
S in real-world use cases, such as automated Deepfake screening.

*  We propose that the non-speech parts contain more identification features to make the
Low-Frequency system (Ours) 22.13 57K detection judgment, especially for detecting T TS-generated speech. This finding provides a

. direction for the potential design of future anti-spoofing systemes.
BaselineOl: RawNet2 [ 1] 22.38 25000K

RawGAT [2] 22.47 440K
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