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Abstract—ASVspoof Challenges have been launched to moti-
vate research on Deepfake audio detection due to its threats to
society. However, the state-of-the-art detection models produce
an unsatisfactory performance on the Speech Deepfake (DF)
of the challenge. The DF subset includes spoofed audio from
various sources, which can better reflect the robustness of the
detector. In this paper, we propose a novel detection architecture
to improve the robustness and generalization ability in two ways.
The first way is aggregating both learned embeddings and hand-
crafted features to obtain more generalizable representations
for Deepfake audio. Our second contribution is formulating
the training process a bi-level optimization problem to make
use of the knowledge of different Deepfake generation methods.
Evaluations of our proposed method provide the best detection
output reported in the literature as a single system without the
help of ensemble modeling and data augmentation.

Index Terms—Deepfake, Audio Deepfake Detection, Anti-
Spoofing, ASVspoof2021

I. INTRODUCTION

Online communication is prone to misinformation, hoax,
and digital forgery. The use of Deep Learning techniques for
spoofed audio production has resulted in Deepfake audio. With
the advancements to generate spoofed audio, Deepfakes are
spreading rapidly across the world. The dangerous impact
of Deepfake audio throughout societies and countries calls
for efficient spoof detection approaches in Automatic Speaker
Verification (ASV) tasks.

The ASVspoof Challenges are hosted regularly to inspire
academicians to propose cutting-edge research spoofed audio
detection [1]. In the ASVspoof2019 challenge [2], two main
categories were included namely, Logical Access (LA) and
Physical Access (PA). The LA category mainly focuses on
Text-to-Speech (TTS) and Voice Conversion (VC) generation
techniques while, the PA category comprises replay attacks. In

the ASVspoof2021 Challenge [3], the Speech Deepfake (DF)
category has been added as a new task, which aims to moti-
vate the robustness of spoofing detection solutions. The full
DF evaluation database contains spoofed audio from various
sources in different storage formats, which are generated with
more than 100 spoofing algorithms that differ from those seen
in the training set [4]. However, the state-of-the-art detectors
that achieve top performance in the LA track result in a high
degree of overfitting in the DF track [3]. The reason behind this
is that most existing detection models are built based on the
training set that contains existing spoofing methods without
utilizing the knowledge from diverse unknown generating
methods. Furthermore, all the top-5 performing submissions
of the ASVspoof2021 DF track use score averaging to build a
fusion system and apply data augmentation (DA) techniques
instead of single systems [4].

To address this issue, our work focuses on feature extraction
and optimization techniques to make the single model detector
more generalized and robust. Our model extracts both learned
features and hand-crafted features from raw audio inputs. We
also formulate the training process into a bi-level optimization
problem, which optimizes the model parameters to make use of
the knowledge to the utmost from various spoofing generation
algorithms. The main contributions of this paper include:

e« We propose a novel Deepfake audio detection model
with bi-level optimization to increase the robustness and
generalization ability of the detector. It provides the best
detection result on the ASVspoof2021 DF evaluation
dataset as a single model without data augmentation.

e We propose a Transformer-based classifier trained on
the double components of feature extraction. Combining
hand-crafted features and learned features produces a
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more generalizable representation for Deepfake audios
with varying characteristics.

o We demonstrate the effectiveness of bi-level optimization
in detecting fake audio generated by unseen algorithms
with a systematic experiment.

II. RELATED WORK

The work in [5] demonstrated the effectiveness of the Sinc-
Net filters as a novel CNN-based layer based on parametrized
sinc functions to achieve faster convergence and better perfor-
mance in speaker and speech recognition. Tak et al. [6] first
adopted SincNet to process the raw audio data and produce
deep embeddings in an End-to-End Deepfake audio detector.
Then, [7] continues integrating the SincNet component with
graph attention networks (GAT). Both models become the
most well-known reproducible detector for Deepfake audio.
Besides this learned feature, the hand-crafted acoustic and per-
ceptual features, such as Mel-frequency Cepstral Coefficients
(MFCC) [8], [9], Constant Q Cepstral Coefficients (CQCC)
[10], [11], and Perceptual Linear Predictive Coefficient (PLP)
[12], have been widely used in the Deepfake detectors to
extract audio representations. Our assumption is that using
either hand-crafted features or learned embeddings only, will
form the Deepfake audio detection model based on the training
set highly where the detection model can not achieve a more
generalized performance in detecting fake audios generated by
unseen methods. Therefore, we propose to integrate both forms
of feature extraction with bi-level optimization technique to
further enhance a robust detection performance as a single
model.

Bi-level optimization is a nested optimization problem
where a set of variables involved in the outer objective function
are obtained by solving another inner objective optimization
problem [13]. The inner problem works as a constraint to the
outer objective problem, such that only the optimal solution
to the inner problem can be a feasible optimal solution to the
outer problem [14]. It has shown its effectiveness in the area
of data augmentation learning [14], molecular conformation
generation [15], and image inpainting detection [16]. It has
never been applied in the audio domain, and we believe
that bi-level optimization has the potential to obtain more
generalizable parameters to detect unseen attacks.

In recent years, LCNN [17], [18] and ResNet [19], [20]
are the most popular choices for the classifier producing
significant performance in the LA track of ASVspoof chal-
lenges. Motivated by the success of the Transformers in the
natural language processing [21] and vision domain [22],
the Transformer encoder has been adopted as the classifier
in detecting synthesized speeches [23], [24]. However, the
existing Transformer-based models do not show sufficient
generalization ability to identify spoofing audios from different
sources or against various codecs. We want to investigate
whether the bi-level optimization technique can be integrated
into the Transformer-based model to gain robustness. The new
contribution of integrating both feature components as inputs
to the Transformer encoder is described in the next section.

III. PROPOSED MODEL

The overall workflow of the proposed detector is illus-
trated in Figure 1, which consists of three main components.
The Transformer-based detection classifier is trained on both
learned and hand-crafted features. A detailed explanation of
each component is provided in the following subsections. We
propose to formulate the training process of the proposed
detector as a bi-level optimization problem, as Figure 2 shows,
for robustness improvement.

Raw Audio Sinc Pattern

Fs(- 09) fs

Classifier
Fc (- |0c)

— Output

Mel-Embedding Pattern
Fm (- |0m)

fm

Fig. 1. The illustration of components for the proposed model

A. Sinc Pattern

The role of this component is to extract a set of learned
embedding by applying SincNet filters. We implement a Sinc
convolution layer with 128 SincNet filters. For each filter, the
cut-in and cut-off frequencies are learnt from the training data.
Our technique to interpret the output of this Sinc layer is
to consider it as a two-dimensional representation with one
channel. Therefore, instead of applying a set of Conv layers
or ResNet blocks, we split this 2-D output into a sequence
of equal-sized patches and flattened each patch into a 1-D
embedding, whose aim is to retain spatial information. Then,
the linear projection layer is applied to reduce the embedding
length for the transformer encoder. The resulting high-level
embeddings, f,, are the final feature representation for the
Sinc Pattern component.

B. Mel-Embedding Pattern

In addition to the SincNet-based feature, we also obtain a
separate set of hand-crafted features. To prevent overfitting
on known attacks, the mel-spectrogram, as a hand-crafted
feature, is added to provide additional acoustic information on
unknown attacks. This component takes raw audio as input and
extracts the corresponding Mel-spectrogram, which describes
the frequency and amplitude of the raw audio in a Mel-scale
and becomes more consistent with the human hearing system.
To match the shape of the feature representation from the
previous Sinc Pattern component, the Mel-spectrograms are
passed into three convolutional layers with batch-Norm and
ReLU functions to obtain an embedding representation named

fm-

C. Classifier Component

From the previous two components, we project both learned
features and hand-crafted features into the same dimension and
then concatenate these two sets of features and pass them to
the Transformer-based classifier. Positional encoding is applied
to this concatenated feature embedding, in order to aggregate
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Fig. 2. Model training via bi-level optimization. The training dataset is split into two subsets, Dy and D,, and passed into two identical detectors. In
each epoch, the parameters of the Mel-Embedding component, 62, are trained on D,, in the inner loop. In the outer loop, the rest of the parameters in the

detector are trained on Dy, based on optimal 67

the information of input order. Since audio Deepfake detection
is a binary classification task, we only utilize the encoder
component of the Transformer. The output of the Transformer
encoder is mapped into a binary label using a linear layer as
the detection result.

D. Training Process with bi-level Optimization

The training process for our detection model can be formal-
ized as:

arg@minE(m’y)ND L(Ytrue, Ypredl0), (1

where z is input audio, y is its corresponding label, D stands
for the training dataset, 6 denotes the parameters of the
entire model, and £ is the loss function that compares the
difference between the predicted label, yp,cq, and true label,
Ytrue- Lhe standard training process, which adopts the whole
training dataset to update the parameters of the entire model
together as (1) indicates, may only utilize the knowledge of
Deepfake audio in the training set, without being generalizable
to unseen spoofing attacks. To address this issue, we formulate
the training process into a bi-level optimization problem to
improve the robustness of the detection model to detect various
attacks.

As the first step, we consider that the trainable parameters
of the entire detection model, 0, consists of three sets based
on different components, as Figure 1 shows. The operation of
Sinc Pattern, Fj, is parameterized by 6,; the parameters in
the Mel-Embedding Pattern, F;,, are denoted by 6,,,, and the
transformer-based classifier, F,, contains trainable parameters
0.. Therefore, we obtain the following equations:

fs:Fs(x|os)7 (2)
fm:Fm(aj|0m)v 3)
Ypred = Fe[concat(fs, fm) | 0], 4

Then, we split the entire training parameters, {05, 6,,, 6.}, into
two subsets as follows,

91 = {9870(1}3
02 = {0, }- (5)

We group the parameters of the SincNet features, 65, and
the Transformer, 0., as 67, because combining the learned
embedding and the attention-based classifier can extract the
underlying characteristics of known spoofing attacks to the
best extent. To prevent overfitting on known attacks, the Mel-
spectrogram, as a hand-crafted feature, is added to provide
additional acoustic information on unknown attacks, where
this step forms a separate partition named 65.

We also introduce a new way to utilize the training dataset,
D, by splitting it into two sets, D,, and Dj. We assume that
the set Dy represents the audio generated by some known
and typical generating methods, while the audio samples in
the set D,, are generated by the diverse unknown generating
algorithms that are different from Dj. We partition the train-
ing set based on the generation methods so the model can
learn the discriminative information among various generation
algorithms. We want to use Dy and D, to train 6; and 6
separately.

To set up a bi-level optimization problem, we define the
optimization of 67 to minimize the training loss on the data
D;; to be the outer objective problem. The inner objective
problem is to optimize 65 on the training dataset D,. The
formulation can be written as follows

07 = argeminE(x,y)NDk L(Ytrue, Ypredl01,05) (6)
1

st. 05 = argelrnilrﬂE(z’y)wDu L(Ytrue, Ypredl61, 02)
2

After initializing 6; and 05, we optimize the value of 6o
using a standard supervised training with gradient descent
on dataset D,, whose aim is to learn the patterns of fake
audio generated by the diverse methods. In order to make the
optimal 6> work as a constraint to the outer objective problem,
we then fix the 5 at its optimal value and update the 6,
on the Dy, set. In this case, 6, is optimized by aggregating
the features of fake audio from both typical and diverse
generation algorithms. There is still one challenge in training
this derived bi-level optimization equation: finding the global
optimal 65 throughout the entire training iterations to update
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0, is infeasible due to the computation cost. We address
this issue by utilizing a local optimal 65 as the constraint
to the optimization of 6;. We set the local optimal 65 as
obtained after each training epoch. The details are described
in Algorithm 1.

Algorithm 1 The bi-level Optimization Algorithm

Require: Dataset D and two identical detection models, Detector_A
and Detector_B, that have the same initial values of the parameters.
Detector_A has parameters {02, 04 04}. and Detector_B is
parameterized by {GSB , 951, GCB }. Each model has a learning rate, p 4
and pp, respectively.

for number of epochs do
Split D into Dy, and D,,
for k-th minibatch do
// Update 62 and 62 with 02 unchanged in Detector_A
04 requires_grad = False
L4 = Detector_A(Dy,)
02— 02 — pa 224

5
A A oL
9c A Hc —HA 302
c

// Share the values of 67 in Detector_A with Detector_B
08 94

05 « 94

// Update 02 with 6F and 0B unchanged in Detector_B
Gf.requires_grad = False

Gf.requires_grad = False

Lp = Detector_B(D.,)

05 05 —up %—5
end for
/I Update the local optimal 62 to Detector_A
04 + 08
end for

return 02,0 02

We believe that our bi-level optimization mechanism is able
to make full use of the knowledge of different generation
methods of Deepfake audio so that we can obtain a detector
with a more generalized detection capacity.

IV. EXPERIMENT

Here we explain the dataset details along with the train-
ing configurations we use for our proposed model. We also
demonstrate our detection results against other state-of-the-art
on the same evaluation data.

A. Datasets and Evaluation Metrics

In order to investigate the robustness of the proposed
detector, we use the audio data under Deepfake (DF)
track in ASVspoof2021 dataset for the experiment. The
ASVspoof2021 evaluation set is the largest and most diverse
online-available dataset and it contains audio clips from other
domains such as VCC2018 and VCC2020 datasets [25]. Thus,
we believe the performance reported on this evaluation dataset
can be the strongest evidence to demonstrate the robustness
of the detectors in the literature. The training data for the DF
track are the same as the ASVspoof2019 logical access (LA)
set, in which the spoofed audio is generated by four TTS and
two VC methods. The ratio of real speech and spoofed speech

in the training set is 1:9. During training, we fix all audio to
the same length of 4 seconds either by truncating the longer
audio clips or concatenating the shorter audio clips repeatedly.

We adopt Equal Error Rate (EER) as the indicator to
measure the detection performance. The EER corresponds to
a threshold where the false positive rate and false negative
rate are equal. A detection result with a lower EER score is
regarded to be more accurate. The EER is also used as the
official evaluation metric for the DF track of ASVspoof2021
Challenge.

B. Model and Training Configurations

In the Sinc Pattern, we use 128 band-pass filters with a
length of 80 to operate on the raw waveform directly. After
max pooling, we split the resulting embedding into 24x24
patches and flattened each patch to a 1D embedding of size
256. Three linear projection layers are applied to shorten the
embedding length resulting in a 128x256 matrix as output
for Sinc Pattern. For the Mel-Embedding Pattern, the feature
is computed using the default setting in TorchAudio Python
Framework with a mel-filter size of 128 and a fast Fourier
Transform size of 400. Three convolutional layers project
the extracted Mel-spectrogram to a deep embedding with a
dimension size of 256, which is the same as Sinc embedding
patches. Then, two deep representations of the audio input with
the same dimension size are concatenated and passed into the
Transformer encoder, which has an embedding dimension of
1024, 6 blocks with 4 heads.

We utilize the whole training set to train our model. In
order to split up the training set into D,, and Dy, we simulate
the technique of 3-fold cross-validation. We have six types of
spoofed audio which can be divided into six groups, and then
we equally spread out the bonafide audio into these six groups.
Each fold contains two groups of training data. During each
epoch, two folds of data are randomly selected to be the set
Dy, and the rest of the training data will be the D,, set. The
model was trained with Adam optimizer using a learning rate
of 0.001 as pa, 0.005 as pup, and 150 epochs with a mini-
batch size of 32. The model with the minimum validation loss
on the development dataset is selected as the best model for
evaluation during training epochs.

C. Results

The performance results are illustrated in Table I. The
models BO1 to B04 are the baselines of the ASVspoof2021
Challenge, and the corresponding evaluation results on the
DF set are reported in [3]. All other systems in Table I
are selected because they have reported the state-of-the-art
performance on the ASVspoof2019 LA set, and they also
have provided the source code or pre-trained models online
to allow reproduction. We then either train the online source
codes with the provided hyperparameters or directly apply the
pre-trained models and test them on the DF track evaluation
set. We observe that our proposed model outperforms the
official baselines with at least a 9.56% improvement in the
EER metric (20.24% cf. 22.38%). As results indicate, our
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approach reports the best performance for the DF evaluation
set as a single model system without data augmentation.
This result emphasizes the robustness and accuracy of our
proposed model on Deepfake detection since the spoofed
audio samples in the DF evaluation set are generated by
various algorithms that differ from the training set. Notably,
the Melspectrogram-LCNN model achieves 16.96% EER with
DA techniques. However, without DA, the performance of
this model decreases to an EER of 21.90%, which is worse
than our model by 7.6% (21.90% cf. 20.24%). We believe it
is meaningful to compare models’ performance without DA,
which reflects the detection ability of the model architecture
under the same condition of training data.

TABLE I
PERFORMANCE ON THE ASVSPOOF2021 DF EVALUATION SET FOR OUR
PROPOSED MODEL AND DIFFERENT STATE-OF-THE-ART SINGLE SYSTEMS
AND BASELINE SYSTEMS

Model EER (%)
Melspectrogram-LCNN with DA [26] 16.96
Our proposed model with bi-level 20.24
Melspectrogram-LCNN w/o DA [26] 21.90
B04: RawNet2 [6] 22.38
B03: LFCC-LCNN [3] 23.48
RawGAT [7] 23.71
Res2Net [27] 24.47
B02: LFCC-GMM [3] 25.25
BO1: CQCC-GMM [3] 25.56
Resnet18-AM-Softmax [20] 28.81
Resnet18-OC-Softmax [20] 31.44

D. Ablation study

We conduct a series of ablation experiments, which is an
intuitive way to demonstrate the effectiveness of the design
choices for our proposed model.

Impact of bi-level optimization. In order to show the ef-
fectiveness of the bi-level optimization technique, we compare
the detection performance of our model both with and without
bi-level optimization. For both versions, with or without bi-
level optimization, the models are trained with the same
training dataset composed of known attacks Dj and unknown
attacks D,,. The remaining structure and the hyperparameter
settings also stay the same. The results are shown in Table II.
We can observe that, without the bi-level optimization, the
performance on the DF evaluation set degrades significantly
by 43% in terms of EER (35.54% cf. 20.24%). It indicates that
the original Transformer-based model suffers from overfitting
due to insufficient training data.

TABLE I
PERFORMANCE IMPACT DUE TO BI-LEVEL OPTIMIZATION

Model Validation Loss EER on Evaluation Set (%)
w/o bi-level 0.328 35.54
w/ bi-level 0.321 20.24

Impact of parameter update frequency during training.
As mentioned in Section 3.4, we adopt a local optimal value

of , to optimize #; by updating 62 to 02A. However, the
frequency of parameter updating may affect the detection
performance. We compare the performance of models trained
with different update frequencies. The approach that we adopt
in the final proposed version, as Algorithm 1 states, is that 621
is updated by 62 every epoch. We also try to update 6% more
frequently, such as once per mini-batch or once per hundred
times of mini-batches. As Table III shows, the performance
decreases as the update frequency increases. It is because, with
more iterations of training, #2 can better reach a local optimal
value to describe the characteristics on D,, set. Also, it should
be noted that all three versions of bi-level optimization with
different parameter update frequencies outperform the system
without bi-level optimization.

TABLE III
PERFORMANCE IMPACT DUE TO VARIOUS PARAMETER UPDATE
FREQUENCY FOR BI-LEVEL OPTIMIZATION

Model EER (%)
Update once per mini-batch 24.01
Update once per 100 mini-batches 21.74
Update once per epoch (Used) 20.24

We also perform experiments to evaluate the impact of the
Transformer structure on the detection result. We find that
a larger number of encoder blocks and attention heads does
not necessarily improve the evaluation performance because of
overfitting. The selection of six encoders with 4 heads gives
the best detection result on the evaluation set. Using ImageNet-
pre-trained weights [28] in Transformer architecture will also
lead to overfitting.

V. CONCLUSION

In this paper, we present a novel Deepfake audio detection
model with great improvement in robustness and generaliza-
tion ability. We propose a Transformer-based classifier trained
on both learned and hand-crafted features from the raw audio
inputs. Combining these two forms of features produces a
more generalizable representation of Deepfake audios with
varying characteristics. We formulate the training phase as
a bi-level problem to optimize the parameters to detect un-
seen spoofing attacks. Our proposed model achieves the best
detection performance on the ASVspoof2021 DF track as a
single model without model fusion and data augmentation,
which outperforms the best official baseline with a 9.56%
improvement in the EER metric. We also conduct systematic
ablation studies to show the effectiveness of bi-level optimiza-
tion to gain the robustness of spoofing detection models and
contribute to reducing overfitting.
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