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ABSTRACT

The current audio anti-spoofing systems usually have a computa-
tionally complex architecture without providing the fundamental
discriminative factors for the detection judgments. The state-of-
the-arts also highly depend on voice information to develop detec-
tor systems, which may become vulnerable when the spoofing al-
gorithms have further improved the quality of fake speech. There-
fore, we conduct a series of experiments on different frequency sub-
bands to investigate the underlying discriminative features. We find
the lowest frequency sub-band in the range from 0 to 1600Hz con-
tains the most critical features that distinguish between Deepfake
and real speech. We also focus on forensic evidence and identify
that the basis of detectors’ judgment exists in non-speech parts in
audio samples. Based on the findings, our single detection system,
with only 57K parameters and utilizing a one-tenth segment of the
entire spectrogram as input, demonstrates its robustness by outper-
forming all official baselines of the ASVspoof2021 DF track. Our
lightweight system can be easily applied in practical use cases, such
as automated Deepfake screening or protecting voice-able devices.

Index Terms— Deepfake Detection, Subband Frequency,
Speech Anti-Spoofing, ASVspoof2021, Robustness

1. INTRODUCTION

With the rapid development of audio spoofing technology, auto-
matic speaker verification (ASV) systems [1] and voice-able de-
vices [2] have faced severe secure challenges. Therefore, the need
for Deepfake audio detection algorithms is emerging. To motivate
the development of anti-spoofing audio technologies, a series of
ASVspoof Challenges have been successfully held. Two major cat-
egories of spoofing audio generation techniques, which are Text-
to-Speech (TTS) and Voice Conversion (VC), are both included in
the Logical Access (LA) Track of ASVspoof Challenge of 2019 [3]
and 2021 [4]. In ASVspoof2021 Challange, a new track, Speech
Deepfake (DF), has been added. The DF Track focus on detect-
ing the spoofing audio that aims to fool a human listener in more
generalized scenarios. And its evaluation set contains speech au-
dio generated by more than hundreds of spoofing algorithms with
different data conditions and compression methods compared to the
training dataset [4], which are created for the purpose of evaluating
the robustness of the anti-spoofing algorithms.

We observe some limitations in the current stage of anti-
spoofing detectors. Most works, even in the post-challenge time,
only focus on improving the detection performance for the LA track
dataset. The state-of-the-arts that produce a promising result on the

LA dataset result in a high degree of overfitting for the DF track
data [4]. Furthermore, the anti-spoofing systems with the top perfor-
mance usually have a relatively complex architecture that requires
a large number of parameters, the help of ensemble systems and
data augmentation techniques [5], rather than stating the basis dis-
criminative factors for the detection judgments. To address these
issues, we conduct a series of systematic experiments to investigate
the existence of underlying discriminative information in different
frequency sub-bands. The power spectrogram of audio samples is
divided into eight segments and passed into the identical back-end
classifier which utilizes the Graph Attention Network (GAT) archi-
tecture. We have evaluated the detection performance of each fre-
quency sub-band and found the lowest frequency sub-band in the
range from 0 to 1600Hz contains the most critical characteristics
that distinguish between Deepfake and real speech. With a one-
tenth segment of the entire spectrogram, our proposed anti-spoofing
detector is able to outperform all official baselines provided in the
ASVspoof2021 Challenge DF Track. Furthermore, the reasons for
the promising performance of low-frequency sub-band feature is an-
alyzed and explained. The contribution of this work includes:

• We propose a robust low-frequency anti-spoofing system with
only 57K parameters, which outperforms all the baselines for
the ASVspoof2021 Challenge DF Track.

• We identify the discriminative information presented in the
low-frequency sub-band of spectrograms, and demonstrate
its power in detecting spoofing audio, especially for TTS-
generated speech.

• We investigate the effectiveness of average-pooling operation
on retaining the essential information of temporal features in
audio samples, such as silence segments.

2. BACKGROUND

In the recent literature, the hand-crafted acoustic features, such as
Mel-frequency Cepstral Coefficients (MFCC) [6, 7], Constant Q
Cepstral Coefficients (CQCC) [8, 9], have been widely used in the
Deepfake detectors to distinguish the spoofing audio based on the
speech quality and similarity [10]. However, this type of detec-
tor becomes vulnerable when the spoofing algorithms have further
improved the quality of fake speech. There is a need to find an
explainable foundation for the countermeasure’s judgment besides
the audio quality. Some studies [11, 12] have shown the impacts of
silence segments on fake audio detection to prevent overfitting, but
there is a lack of detailed reasons to support the effect of non-speech
segments. In this work, we further investigate to explore the under-
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lying difference between real and spoofing speech. We assume that
the non-speech parts in the speech audio, including the breathing or
silence segments, should contain more essential discriminative in-
formation than the voice parts. It is because the spoofing algorithms
focus more on the actual speech content in order to fool the listeners
rather than paying attention to fabricate other factors in real-world
scenarios, such as electronic noise caused by the recording devices,
which may not even be noticeable to the human. Therefore, it moti-
vates us to investigate the existence of discriminative information in
different frequency sub-bands, especially the low-frequency bands,
and determine the effective identification features with an expla-
nation for robust detectors. It also makes our work different from
existing models that use sub-band analysis, which either incorpo-
rates more than half of the spectrogram range as a single sub-band
or combines all sub-band features to encompass the full frequency
region [13, 14].

3. EXPERIMENTAL SETUP

3.1. Dataset and Metrics

We chose to use the ASVspoof2021 DF Track dataset [15] to re-
flect the robustness of our detection algorithm. To follow the pro-
cedure of the ASVspoof2021 Challenge [4], the training and the
development stages of the DF track use the same set of data as the
ASVspoof2019 Logical Access (LA) Track, which both contain the
spoofed audio generated by four TTS and two VC algorithms. In
the training set, the ratio of real speech and spoofed speech is 1:9.
The evaluation set of DF Track contains Deepfake audios generated
from hundreds of unseen algorithms which are different from those
in the training and development set. The DF Track evaluation data
are collected from three data sources, ASVspoof2019 LA evalua-
tion set [16], VCC2018 [17], and VCC2020 [18]. Therefore, it can
better emphasize the ability of algorithms to fake speech detection
across unknown and multiple conditions. Equal Error Rate (EER)
is adopted as the indicator to measure the performance of detectors.

3.2. Front-End feature

We utilize the Fast Fourier Transform (FFT) power spectrogram as
the main acoustic feature to describe the input audio signals, rather
than using a Mel-scale spectrogram or the constant-Q transform co-
efficients. It is because the FFT power spectrogram keeps the re-
lationship between each frequency bin as linear, which retains the
audio information across the entire frequency spectrum instead of
exaggerating the information at the lower frequencies or being lack
of resolution at the high frequencies. Therefore, we can obtain rea-
sonable evidence to determine the impact of different sub-bands on
spoofing audio detection.

Before transforming to the spectrogram, we first fix all au-
dio clips to the same length of 4 seconds by either truncating the
longer audio clips or concatenating the shorter audio clips repeat-
edly. Then, the spectrograms are extracted using a Hann window
function with a window size of 1000. Each input audio clip re-
sults in a spectrogram feature matrix with a shape of 501× 259, of
which 259 is the number of total time frames and 501 is the number
of frequency bins. In order to investigate the importance of each
sub-band, we divide the entire feature matrix into eight parts ver-
tically with the same size, and each sub-feature matrix contains 50
frequency bins with 259 frames, which cover the acoustic informa-
tion in the range of 1600Hz. The amplitude of each feature element
is converted in a Decibel Scale to reflect the sound intensity.

The resulting 2-dimensional (2D) feature matrix can be con-
sidered as an image input with one channel, which is represented
as M ∈ R(C×F×T ). F and T stand for the number of frequency
bins and time frames respectively, while C refers to the number
of feature channels, which is 1 initially. Then, this feature matrix is
passed into four ResNet blocks [19] to obtain a deep feature embed-
ding. Our ResNet blocks are different from [20] in two ways: (1)
The batch normalization layer with the ReLU activation function
is applied before both convolutional layers, which can reduce the
overfitting during training since the weights are normalized before
the convolution operation. (2) We use a stride of 2 on convolutional
layers instead of max-pooling to avoid information loss in the tem-
poral dimension.

3.3. Model architecture

The GAT is applied as the classifier for the experiment. Since we fo-
cus on the effectiveness of the spectral domain, an average-pooling
operation is applied across the temporal dimension of the feature
embedding matrix, M ∈ R(C×F×T ), which results in a spectral
feature matrix S ∈ R(C×F ). We choose to apply average pooling
rather than the max-pooling operation because max pooling may
more focus on the extreme features, which will ignore the impacts
brought by the silence segments inside the audio clips. Applying
average pooling can consider all features present in the temporal
domain, which will extract a more smooth representation.

In the spectral feature matrix S ∈ R(C×F ), each frequency bin
of F is regarded as a node in the graph with a feature dimensionality
of C. All nodes are fully connected inside the graph, and a GAT
layer with an attention mechanism is applied to each node while
assigning a learnable weight to each frequency bin. We then adopt
the graph pooling technique inspired by [20] to select a subset of
nodes with the largest values of weights to prevent overfitting. The
final fully-connection layer is applied to the selected nodes to obtain
the binary classification result.

Layer Structure
Conv layer conv2D((2,3), 16, stride = 1, padding = 1)

BatchNorm, ReLU

AveragePool((1,2), stride = 2)

[Res Block1] ×2 BatchNorm, ReLU

conv2D((2,3), 16, stride = 1, padding = 1)

BatchNorm, ReLU

conv2D((2,3), 16, stride = 1, padding = 1)

[Res Block2] ×4 BatchNorm, ReLU

conv2D((2,3), 32, stride = 2, padding = 1)

BatchNorm, ReLU

conv2D((2,3), 32, stride = 1, padding = 1)

GAT Block AdaptiveAveragePool2D(26,1)

GAT layer (#node = 26)

Graph pooling (#node = 16)

Output Fully-Connected layer

Table 1: The detailed architecture of the anti-spoofing detector used
in the experiment
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3.4. Training Configurations and Strategies

The detailed structure of the detection algorithm is shown in Table
1, which utilized a spectral sub-band of the spectrogram as input.

In the first two ResNet blocks, a convolutional filter of a size of
16 is applied. Then, the filter size increases to 32 for the other four
ResNet blocks. The filter size is chosen as a fairly small value to
prevent the overfit towards the training data. An asymmetric kernel
size of the convolutional filter is chosen with a height of 2 and a
width of 3 to aggregate the different lengths of features in the spec-
tral and temporal dimensions. After the ResNet blocks and average-
pooling operation, the number of frequency bins becomes 26 with
a feature dimension of 32. The graph-pooling layer will then select
16 frequency bins with the largest value of weights to produce the
final prediction.

The Weighted Cross Entropy is used as the loss function. The
weight of the real speech and the spoofing speech is set to 0.9 and
0.1 because of the data imbalance in the training dataset. An Adam
optimizer [21] with a weight decay of 1e-4 is used. The learning
rate increases linearly for the first 10 epochs as a warm-up to 1e-4,
and then decreases to zero by a cosine function. The model was
trained with 300 epochs with a mini-batch size of 32. The model
with the minimum validation loss for the development dataset was
selected as the best model for evaluation. The detection model in
our experiment only utilizes 57K parameters in total.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1. Frequency sub-band performance

The experiment results are shown in Table 2, which indicates the ef-
fectiveness of each frequency subband on spoofing audio detection.
Table 2 demonstrates that the lowest sub-bands which only contain
the first 50 frequency bins (0-1600Hz) produce the best EER score
of 22.13% on the ASVspoof2021 DF evaluation set. Other higher
frequency sub-bands do not contain such discriminate features to
distinguish real and spoofing speech compared to the lowest band,
while the full-band features lead to overfitting.

We also report the detection results of each sub-band on differ-
ent data sources within the DF evaluation set. The spoofing data
in VCC2018 and VCC2020 are all generated by various VC algo-
rithms. The speech in ASV2019 contain both TTS and VC spoof-
ing methods, while the majority of data are created via TTS sys-
tems. We can observe that the lowest sub-band has a significantly
advanced ability to detect spoofing speech generated by TTS than
VC as it gives the minimum EER of 13.34% for the ASV2019 sub-
set. The full band of frequency features performs better in detecting
VC-generated speech for both VCC2018 and VCC2020 sets, which
indicates that the information in the actual voice segment is essen-
tial to detect the VC-based spoofing speech.

4.2. Sub-band feature analysis

We further investigate the characteristics of the sub-band features.
Figure 1 shows the power spectrogram of the lowest-frequency sub-
band (0-50 frequency bins) of both real and spoofing audio in the
training dataset. The x-axis stands for the time frames, and the y-
axis represents the frequency bins, while the colour indicates the
sound intensity in the Decibel scale. We can observe that there is
a continuous noise band between 0 to 10 frequency bins in the real
speech throughout the entire time frame. This noise band occurs in
all real speech samples in the ASVspoof2019 training data, which
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Figure 1: The spectrogram of low-frequency sub-band (first 50 bins)
for both bonafide and spoofing speech
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Freq-band ASV2019 VCC2018 VCC2020 EER
0 - 50 bins 13.34 39.5 32.03 22.13

51-100 bins 17.43 41.9 44.09 25.94

101-150 bins 18.77 42.04 39.87 25.70

151-200 bins 19.12 43.81 33.08 24.62

201-250 bins 17.47 42.93 31.09 23.25

251-300 bins 19.48 42.84 31.61 24.44

301-350 bins 18.17 41.49 30.52 24.16

351-400 bins 19.59 41.22 30.95 24.01

401-450 bins 18.71 45.61 31.33 24.91

451-501 bins 35.63 43.12 40.41 36.41

0 - 501 bins 21.13 32.52 30.13 25.53

Table 2: The performance results of different frequency sub-band
inputs in terms of EER (%) on each subset in the ASVspoof2021
DF track evaluation dataset based on the original source (ASV2019,
VCC2018, VCC2020). The pooled EER scores for the entire eval-
uation set are shown in the last column.

should be caused by electronic recording devices. However, for the
TTS-generated speech samples, there is no such continuous noise
band at the low-frequency range, or the noises shown in the spec-
trogram are either unstable or abnormal. This situation occurs be-
cause TTS algorithms create audio directly from the text data, which
more focus on improving the quality of voice rather than generating
some noises in real life. Therefore, the low-band frequency feature
contains the most discriminative information to detect TTS-based
spoofing data, which is consistent with our experiment result in the
previous section.

For the VC-based spoofing audio, since they are generated di-
rectly from the real recording speech, the electronic noise may be
retained depending on the particular architecture of the VC algo-
rithm. For example, the spoofing speech in A05 and A06 subsets,
which are generated by different VC algorithms, result in different
observations for the noise bands on the spectrogram. A06 still keeps
the continuous noise band after altering the speakers’ characteris-
tics, which provides the explanation for the relatively poor perfor-
mance of the low-frequency band on detecting VC-based spoofing
audios.

4.3. Performance comparison

Table 3 illustrates the performance of our proposed system using the
lowest frequency band compared to other single systems reported
in the literature. The models, B01 to B04, are the official baselines
of the ASVspoof2021 Challenge, and the corresponding evaluation
results are reported in [4]. The other two chosen models, RawGAT
[20] and Res2Net [22], are state-of-the-art for the ASVspoof LA
track with open-source code available. We train the online source
codes with the provided hyperparameters to obtain the detection re-
sults on the DF track evaluation set. As Table 3 indicates, our low-
frequency system outperforms all baselines by utilizing a one-tenth
segment of the entire spectrogram. This result emphasizes the dis-
criminative information that exists in the lower frequency has the
powerful and robust ability to distinguish spoofing speech. With
only 57K parameters, our system with the least complex architec-
ture has a higher possibility of being applied in real-world use cases.

Model EER (%) Parameters
Low-frequency system (Ours) 22.13 57K
B04: RawNet2 [4] 22.38 25000K

RawGAT [20] 22.47 440K

B03: LFCC-LCNN [4] 23.48 -

Res2Net [22] 24.47 923K

B02: LFCC-GMM [4] 25.25 -

B01: CQCC-GMM [4] 25.56 -

Table 3: Performance on the ASVspoof2021 DF evaluation set for
our proposed model and different state-of-the-art single systems and
baseline systems

4.4. Ablation study

We measure the effectiveness of our design choices in ablation ex-
periments as Table 4 shows. The first experiment is to demonstrate
the impact of the average-pooling operation in generating the spec-
tral feature matrix. After replacing the average-pooling layer with
max pooling, the detection performance degrades by 6.6% (23.70%
cf. 22.13%), which indicates the benefit of the average-pooling op-
eration in retaining informative temporal features. The second ex-
periment investigates the effectiveness of the cosine-based schedul-
ing technique in updating the learning rate. An unchanged learning
rate of 1e-4 throughout the training process leads to a performance
degradation of 3.2% (22.88% cf. 22.13%) caused by overfitting.

Model EER (%)
Low-frequency system 22.13
w/o averaging-pooling 23.70

w/o learning rate scheduling 22.88

“w/o averaging-pooling” refers to using max-pooling layers in-
stead of average-pooling; “w/o learning rate scheduling” refers
to keeping the learning rate as 1e-4 without decreasing by a co-
sine function

Table 4: Ablation experiments of our model design

5. CONCLUSION

In this work, the effect of different frequency sub-bands on detect-
ing spoofing audio is explored. We propose a robust GAT-based
Deepfake audio detector, utilizing a low-frequency band as input, to
detect fake speech across various conditions. With only 57K param-
eters, our single system has obtained a compelling performance that
outperforms all official baselines of the ASVspoof2021 DF track.
Because of its good robustness and usage efficiency, our model, as
the most lightweight system reported in the literature, has gained
a higher possibility of being applied in real-world use cases, such
as automated Deepfake screening. We also identify the discrimina-
tive information presented in the low-frequency sub-band of spec-
trograms, which provides an explanation of the effectiveness of our
low-frequency detector. We propose that the non-speech parts con-
tain more identification features to make the detection judgment, es-
pecially for detecting TTS-generated speech. This finding provides
a direction for the potential design of future anti-spoofing systems.
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