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ABSTRACT
Audio content synthesis has stepped into a new era and brought
a great threat to daily life since the development of deep learning
techniques. The ASVSpoof Challenge and the ADD Challenge have
been launched to motivate the development of Deepfake audio de-
tection algorithms. Currently, the detection models, which consist
of front-end feature extractors and back-end classifiers, utilize the
physical features mainly, rather than the perceptual features that
relate to natural emotions or breathiness. Therefore, we provide a
comprehensive study on 16 physical and perceptual features and
evaluate their effectiveness in both Track 1 and Track 2 of the ADD
Challenge. Based on results, PLP, as a perceptual feature, outper-
forms the rest of the features in Track 1, while CQCC has the best
performance in Track 2. Our experiments demonstrate the signifi-
cance of perceptual features in detecting Deepfake audios. We also
seek to explore the underlying characteristics of features that can
distinguish Deepfake audio from a real one. We perform statistical
analysis on each feature to show its distribution differences on
real and synthesized audios. This paper will provide a potential
direction in selecting appropriate feature extraction methods for
the future implementation of detection models.

CCS CONCEPTS
• Computing methodologies → Feature selection; Artificial
intelligence; Neural networks; • Applied computing→ Investiga-
tion techniques.
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1 INTRODUCTION
The emergence of deep learning methods has resulted in various
applications in video editing, speech recognition and biometrics.
Although these applications are built to optimize the workflow
in every context, there have been several online frauds and data
forgeries within the applications. The term, Deepfake, came to
the spotlight after multiple online users tried to alter different
multimedia such as videos, images and audio using deep learning
methods. Videos and voices of politicians and actors were used to
replace the original speaker. As audio synthesis techniques grow
in popularity, especially after the development of deep learning
techniques, anti-spoofing methods are proposed in the literature to
detect bonafide audio from Deepfake ones [1, 2, 31, 36].

In order to motivate researchers in the speech processing field to
better distinguish the fake and real audio in the Automatic Speaker
Verification (ASV) systems, the ASVSpoof challenge was first pro-
posed in 2015 [33]. The original ASVSpoof dataset consists of two
categories of spoofing attacks, which are Logical Access (LA) and
Physical Access (PA). Another category named Speech Deepfake
(DF) has been added to the ASVspoof2021 challenge . Both LA and
DF sets consist of synthesized audio samples generated by Text-
to-Speech (TTS) and Voice Conversion (VC) algorithm, while the
DF task involves the compressed audios without ASV systems [11].
However, in the ASVSpoof dataset, background noises contained
in fake audios are ignored, and also the dataset does not consider
the case that small fake segments are hidden inside a real speech.
Therefore, the Audio Deep synthesis Detection (ADD) challenge
is proposed to overcome these issues. The ADD dataset contains
three main tracks: low-quality fake audio detection (LF) as Track
1, partially fake audio detection (PF) and audio fake game (FG) as
Track 2 and Track 3 respectively [35]. In this paper, we will focus
on Track 1 and Track 2 of the ADD challenge dataset.

With the development of anti-spoofing challenges, various Deep-
fake audio detection algorithms have been proposed. The overall
architecture of detection models can be categorized as End-to-End
structure and Two-Part structure. In End-to-End architectures, the
network accepts raw audio as input and the utterances are pro-
cessed through the network to produce the classification outcome
[7, 27]. In Two-Part architecture, a front-end feature extractor is
utilized to convert the audio waveform into a parametric feature rep-
resentation, which is to be analyzed by the back-end classifier[32].
In this paper, we focus on both physical and perceptual features to
represent the characteristics of the utterances and compare their
performance on the detection results. Physical features indicate the
mathematical computations on audio waves such as the spectrum,
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the cepstral coefficients and the energy, while the perceptual fea-
tures focus on human perception of audio namely pitch, loudness
and timbre. For the back-end classifiers, we will adopt both tradi-
tional machine learning methods such as Gaussian Mixture Models
(GMMs), and the state-of-the-art deep neural networks-based mod-
els, which are RawNet2 and SE-Res2Net50.

Our contributions in this paper are three-fold. First, we select
16 different physical and perceptual features, and compare their
detection performance on both Track 1 and Track 2 in the ADD
challenge. Second, we perform a statistical analysis to evaluate the
ability of the selected features in capturing underlying characteris-
tics that distinguish between Deepfake and real audios. Third, we
are the first to provide a concise review on a series of perceptual
features, and demonstrate their significance in detecting Deepfake
audios.

The remainder of this paper is organized as follows. Section 2
provides a detailed summary of the related work on audio feature
extraction. Section 3 presents the description of the selected fea-
tures. Section 4 describes the experiment and our results. Section 5
analyzes the experiment results and presents the evaluation. Section
6 concludes the paper.

2 RELATEDWORK ON FEATURE SELECTION
For the related work, we focus on the features that are adopted in
the current Deepfake audio detection algorithms with the Two-Part
architecture. Features are used for extracting the discriminative
information between real and fake audio. Therefore, a good choice
of features will benefit Deepfake detection performance. Currently,
there are two major categories of widely used features. The first
type is traditional acoustic features, and the other type is to apply
deep learning techniques to the acoustic features to extract the
embedding representation.

The traditional acoustic features work as the backbone to de-
scribe the characteristics of audio clips, which mostly involve
Fourier Transform and Constant-Q Transform. This type of fea-
ture includes phase features, power spectrum features, and cepstral
coefficients. Das et al. [9] derive seven long-range acoustic fea-
tures based on long-term Constant-Q Transform and find that the
long-range features outperform the features obtained from short-
time transforms. Sahidullah et al. [23] compare 19 acoustic features
based on first-order Fourier coefficients and second-order spec-
tral features. Results indicate the selected features that contain
high-frequency regions, detailed spectral information, and dynamic
characteristics, receive a better performance in the spoofing attack
detection. Albadawy et al. [2] propose to apply the third-order
spectral correlations revealed by bispectral analysis to detect syn-
thesized speeches which are generated by the GAN-based algo-
rithms. Alzantot et al. [4] propose a fusion extractor that takes the
weighted average of multiple acoustic features and converts them
into spectrograms.

The deep learning-based features have the ability to maximize
the difference between real and spoof speeches. Wu et al. [32] use
the real audio data only to train a CNN-based feature genuinization
transformer. The trained transformer can transform the testing
speech to amplify the difference between the real and spoof audio.
Chen et al. [6] apply three variants of ResNet structures to extract

deep feature representation of the raw audio signals. The detection
performance of the ensemble system that combines these three
deep embedding features is competitive. Some research works also
combine acoustics features and embedding features. Balamurali et
al. [5] concatenate the traditional acoustic features such as MFCCs,
and CQCCs, with the deep embedding produced by an autoencoder
to form the final set of features, which ensures the robustness of
detection.

The previous works of these two categories mainly focused on
the physical features, which are the mathematical measurements
computed directly through the audio soundwave. However, there is
not much attention to perceptual features, even though the percep-
tual features are important in identifying real and spoofing audios
because Deepfake audios may lack natural emotions, pauses or
breathiness. Therefore, we explore the perceptual features in this
paper and compare their performance in detection Deepfake au-
dios with the physical features. The proposed analysis results can
provide a convincing reference to select features while developing
audio spoofing detection algorithms.

3 DESCRIPTION OF THE SELECTED
FEATURES

In this section, we provide detailed descriptions of the selected
features for both categories of physical and perceptual. We also
include references for the features that are adopted or discussed
in the previous literature. As Table 1 indicates, there are several
features that have not been used in the field of Deepfake audio
detection, to the best of our knowledge.

3.1 Physical features
Mel-Frequency Cepstral Coefficients (MFCC): MFCC [10] indi-
cates the energy of a speech signal in the frequency domain. This
feature is based on the logarithm of the Mel-scale filter bank and the
decorrelation of Discrete Cosine Transform (DCT), which gathers
information representing low-frequency regions of the utterance.
MFCC is inspired by imitating the human hearing system and is
widely used due to its robustness in presence of noise. Librosa
library [20] is used to extract this feature in our experiment.

Constant-Q Cepstral Coefficients (CQCC): Constant-Q trans-
form (CQT) is a perceptually motivated time-frequency analysis
of a speech signal [29]. CQCC can be computed using CQT and
spectral analysis. Frequency bins represented by constant Q are in
a geometric scale different from the linear scale of DCT. Uniform
sampling is applied to the constant Q power spectrum log followed
by DCT on the resultant log to obtain CQCC [21, 34].

Δ2 - MFCC / Δ2 - CQCC: Static features do not take time-variant
aspects of the speech into consideration. To obtain the time deriva-
tives of spectrum-based features, deltas (Δ) and delta-delta (Δ2)
coefficients, called differential and acceleration respectively, are uti-
lized [8]. The Δ2 feature is the second-order derivative of the static
feature through a few consecutive frames over time. In our experi-
ment, we extract the Δ2 feature from the static one and concatenate
it to the original static feature as the input.

Mel-spectrogram: Mel spectrogram is a time-frequency rep-
resentation. When an audio signal gets divided into windowed
segments and the fast Fourier transform is applied to each segment,
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Table 1: Summary of the selected features along with their configuration parameters, dimensions and the references of the
related studies in anti-spoofing models

Type Feature Name Configuration Parameters Dimension Applied / discussed in
Deepfake audio detection models

Physical features

MFCC Hop length = 160, Number of filter = 20 (20, 301) [4, 5]
Δ2 - MFCC Delta window size = 3 (60, 301) [8, 23]
CQCC Number of filter = 19 (20, 352) [29, 34]
Δ2 - CQCC Delta window size = 3 (60, 352) [8, 23]
Mel-spectrogram Hop length = 160, Hanning window (129, 301) [4]
ZCR Hop length = 160 (1, 301) -
RMSE Hop length = 160, STFT window (1, 301) -
Spectral based feature Hop length = 160, Hanning window (3, 301) -
Spectral flatness Hop length = 160, Hanning window (1, 301) -

Perceptual features

Pitch based feature Computed with Parselmouth software (2, 105) -
Onset Strength Hop length = 160, time lag = 1 (1, 301) -
HNR Computed with Parselmouth software (1, 107) -
Intensity Computed with Parselmouth software (1, 129) -
Jitter-shimmer based feature Computed with Parselmouth software (1, 11) [14]
Chromagram Hop length = 160, Number of chroma bins = 12, Hanning window (12, 301) [24]
PLP Window length = 0.025 (19, 306) -

the outputs are called a spectrogram. Mel scale is a logarithmic
scale that shows equal distances on the scale, have the same percep-
tual distance, which aims to scale the frequency so that it matches
with the human hearing system. Mel-spectrogram is obtained by
converting the spectrograms to the Mel scale, where the Librosa
library is used.

Zero-crossing Rate (ZCR): The ZCR is the rate at which the
sign of a signal changes from positive to zero to negative or from
negative to zero to positive, which is a temporal feature of a speech
signal computed in the time domain [15]. Its value is being used as
a feature to classify percussive sounds, music genre classification,
and speech analysis. The ZCR is also a significant indicator of
the frequency of the audio signal. We apply Librosa to obtain this
feature.

Root-Mean-Square Energy (RMSE): The energy of a speech
utterance corresponds to its amplitude. After summing up the en-
ergy of all samples in an audio frame and dividing it by the total
number of samples, the RMSE is obtained by taking the square root
of the resulting value. In our experiment, we compute the RMSE
value based on spectrograms.

Spectral based features:We combine three types of spectral
measurements as the spectral-based features, which consist of the
spectral centroid, the spectral bandwidth, and the spectral roll-off.
The spectral centroid measures where the center of mass for a
spectrum is, which shows where most of the energy is focused. The
spectral bandwidth is obtained by computing the variance of the
spectral centroid. The spectral roll-off is the threshold frequency
for a spectrogram bin such that 85% of the spectral energy is lower
than that value. We obtain these three measurements using Librosa
with the same set of configuration parameters and concatenate the
resulting vectors together as the spectral-based features.

Spectral flatness: Spectral flatness is also called the tonality
coefficient and it is used to measure the amount of correlation in
speech signals. This feature is utilized to indicate the pureness tone
of an audio sample opposed to being noisy. Spectral flatness is usu-
ally converted to decibels (dB). The meaning of tonal in this feature
is the number of peaks in the power spectrum of the utterance.
Higher spectral flatness value indicates a similar amount of power
in all spectral bands such as white noise. Pure tones have a value

of 0 for spectral flatness which will result in a spiky power spec-
trum, focused on a small number of bands [12]. This feature can be
extracted by Librosa library.

3.2 Perceptual features
Pitch based features: Pitch is one of the major perceptual proper-
ties of sounds, which is related to how high or low it sounds when
humans hear them. Pitch can be represented by the frequency nu-
merically, which is called pitch frequency. However, two sounds
with the same pitch frequency may have different pitch sensations
because of pitch strength. Pitch strength is independent of the pitch
frequency and is measured by the height of the first peak in the
stimulus waveform auto-correlation [25]. We apply the pitch anal-
ysis tool in the Parselmouth library [17] to obtain the numerical
value of pitch frequency and pitch strength, which are concatenated
together to represent the pitch characteristics of the audio clips.

Onset Strength: Onsets happen when there is a sudden rise
of energy across the spectrum, which indicates the beginning of
a sound event. The detection of onsets has been proved useful in
the auditory scene analysis [26] and tempo estimation [30]. In the
context of speech analysis, the strength of onsets may extract the
edge information for the periods of speech and eliminate the effects
of the noise. Librosa library is adopted to obtain the onset strengths
for each audio clip, and we set the hop length as 160 to make the
window length 0.025 seconds.

Harmonics-to-Noise Ratio (HNR): The HNR describes the
ratio between the periodic and non-periodic segments of a sound,
which quantifies the amount of additive noise of the speech in
the unit of dB [13]. This feature is widely adopted to diagnose
pathological voices in the vocal acoustic analysis [13]. The Deep-
fake speech synthesized by TTS systems may not have the current
phonation, so the HNR could be useful in detecting synthesized
speeches. Parselmouth library is used to extract the value of HNR.

Intensity: The feature of intensity represents the power carried
by a sound wave per unit area. In human perception, the sound
intensity usually is described by the loudness of sound in the unit
of dB. In our experiment, the intensity values are also fetched using
Parselmouth library.

Jitter-shimmer based feature: Jitters measure variations in the
fundamental frequency of the audio signals, while shimmers show
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the amplitude variations of the sound waveform [28]. Parselmouth
library provides five measurements for jitters and six measurements
for shimmers in total. Jitter measurements include local jitter, local
absolute jitter, rap jitter, ppq5 jitter, and ddp jitter. The measure-
ments in shimmers consist of local shimmer, local shimmer in dB,
apq3 shimmer, apq5 shimmer, apq11 shimmer, and dda shimmer.We
concatenate these 11 measurements into a one-dimension vector
and regard it as a set of jitter-shimmer-based perceptual features.

Chromagram: Chromagram is a perceptual feature that relates
to the different pitch classes within the time window. It maps the
spectral audio information into one octave based on the short-time
Fourier Transform. In our implementation using Librosa, one octave
includes twelve chroma bins, and the hop length is set to be 160.

Perceptual Linear Predictive Coefficient (PLP): The PLP is a
low-dimensional representation of speech, which combines spectral
analysis and linear prediction analysis. In order to compute the PLP
coefficients, the critical-band spectral resolution, equal loudness pre-
emphasis, and intensity-to-loudness compression are performed on
the weighted windows of audio samples [16]. Compared to Linear
Predictive Coefficients (LPCs), PLP is more consistent with human
auditory and is robust to noise [3, 16]. We apply the Spafe library
[19] to extract the PLP coefficients of the speech data.

4 EXPERIMENT
4.1 Dataset
For the experiment, we use ADD 2022 Dataset [35], which is a high-
fidelity multi-speaker Mandarin speech corpus and is provided by
the 2022 Audio Deep synthesis Detection Challenge. The training
set of the ADD 2022 dataset contains 3012 real speeches and 24072
synthesized speeches. For the purpose of training, we resample all
audio samples to 16kHz and fix all the audio lengths to 3 seconds
by either truncating the longer audio clips or concatenating the
shorter audio clips repeatedly. The adaptation sets of ADD 2022
Dataset are used for performance testing, since we do not have
access to the official test datasets. We mainly focus on two tracks
of the provided adaptation sets. The first track (Track 1) consists of
real speeches and fully fake audios generated using the TTS and
VC algorithms with various background noises. The second track
(Track 2) comprises partially fake speech generated bymanipulating
the original real utterances with real or synthesized audio.

4.2 Classifiers
To compare the effectiveness of various features, we select three
common baseline or state-of-the-art Deepfake audio detection clas-
sifiers.

GMM: Gaussian Mixture Model is a widely used audio spoofing
classification model based on traditional machine learning. It imple-
ments the expectation-maximization algorithm to fit the provided
data into a mixture of a finite number of Gaussian distributions.
This classifier usually plays the role of a base method to compare
with other more advanced deep learning-based classifiers [32]. For
instance, it has been selected as a baseline for both ASVSpoof 2019
and ASVSpoof 2021 challenges. We adopt the official code1 pro-
vided by ASVSpoof 2021 to implement the GMM classifier, setting

1https://github.com/asvspoof-challenge/2021

the number of mixture components as 100, the type of covariance
parameter as diagonal, and the convergence threshold as 0.01.

RawNet2[27]: The RawNet2 is a deep learning-based Deep-
fake audio detection algorithm, which consists of CNN and ResNet
structures. The model consists of two residual blocks, and each
one contains two batch normalization layers, two leaky-Relu, two
convolutional, a feature map scaling layer, and a max-pooling layer.
The key point of the feature map scaling layer is that this layer
can act as an attention mechanism to extract a more discriminative
representation of audios. This algorithm produced the second-best
performance in ASVSpoof 2019 challenge and has been selected as
a baseline for ASVSpoof 2021 challenge.

Originally, the RawNet2 is proposed as an End-to-End algorithm.
Its first set of SincNet layers works as a customized filter bank to
learn low-level speech representations from raw speech waveforms
[22]. In our experiment, we replace the SincNet layers with the
various front-end feature extractors and feed the extracted feature
vectors directly to the following residual blocks of the RawNet2
model. This classifier is trained using a learning rate of 0.0001, 100
epochs and a batch size of 10.

SE-Res2Net50[18]: This classifier is an upgraded ResNet de-
tection architecture, which enables multiple feature scales during
the training process. After the first convolutional layer, the input
feature maps are split into multiple subsets, and then the subsets are
connected using a hierarchical residual-like structure. A squeeze-
and-excitation (SE) block is stacked onto each ResNet block to
assign different weights to different feature subsets. This state-of-
the-art achieved an EER of 1.99% in the LA track of ASVSpoof2019
challenge. In our experiment, we set the number of feature scales
as 8, and train this model using a learning rate of 0.0001, 50 epochs
and a batch size of 10.

4.3 Evaluation metric
We adopt Equal Error Rate (EER) as the indicator to measure the
detection performance. An EER corresponds to a threshold where
the false positive rate (False Alarm) and false negative rate (Miss)
are equal. A detection result with a lower EER score is regarded to
be more accurate. The EER is also used as the official evaluation
metric for the ADD 2022 Challenge [35].

4.4 Results
Table 2 shows the detection results of each selected feature for
Track 1. The best performance is produced by the PLP-RawNet2
and Mel-spectrogram-RawNet2 model with an EER score of 19%.
Comparing the 16 features, PLP has the lowest EER score for all
three back-end classifiers in Track 1. This result emphasizes the
strength of PLP in being consistent with the human hearing system
and the robustness to noises.

Table 3 indicates the detection result for Track 2, which is partial
Deepfake detection. The majority of the selected features receive
a poor EER score after feeding to the three back-end classifiers,
except for CQCC-related features. The CQCC-SE-Res2Net50 model
achieves a 22% EER score.

Motivated by these observations, we perform further experi-
ments by combining two single features to train as a new feature.
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Table 2: The EER results of the selected features for Track 1

Feature EER

GMM RawNet2 SE-Res2Net50
MFCC 0.52 0.22 0.35
Δ2 - MFCC 0.44 0.23 0.26
CQCC 0.49 0.38 0.42
Δ2 - CQCC 0.47 0.41 0.41
Mel-spectrogram 0.52 0.19 0.46
ZCR 0.56 0.33 0.33
RMSE 0.56 0.36 0.36
Spectral based feature 0.35 0.26 0.29
Spectral flatness 0.40 0.42 0.44
Pitch based feature 0.41 0.3 0.37
Onset Strength 0.36 0.32 0.43
HNR 0.33 0.29 0.48
Intensity 0.55 0.28 0.29
Jitter-shimmer based feature 0.42 0.38 0.43
Chromagram 0.54 0.34 0.32
PLP 0.29 0.19 0.23
Pitch based + MFCC 0.63 0.22 0.24
CQCC + PLP 0.32 0.39 0.41

Table 3: The EER results of the selected features for Track 2

Feature EER

GMM RawNet2 SE-Res2Net50
MFCC 0.94 0.96 0.97
Δ2- MFCC 0.74 0.86 0.97
CQCC 0.50 0.35 0.22
Δ2 - CQCC 0.49 0.36 0.24
Mel-spectrogram 0.96 0.93 0.72
ZCR 0.64 0.92 0.95
RMSE 0.95 0.76 0.89
Spectral based feature 0.72 0.92 0.92
Spectral flatness 0.65 0.76 0.44
Pitch based feature 0.45 0.42 0.39
Onset Strength 0.49 0.80 0.70
HNR 0.23 0.64 0.53
Intensity 0.89 0.98 0.93
Jitter-shimmer based feature 0.81 0.48 0.38
Chromagram 0.68 0.89 0.88
PLP 0.53 0.99 0.94
Pitch based + MFCC 0.99 0.91 0.95
CQCC + PLP 0.07 0.32 0.35

For the first combination, we choose MFCC and pitch-based fea-
tures, because they are the most widely used and fundamental
features in the categories of physical and perceptual respectively.
We select CQCC and PLP as the second combined feature because
of their excellent performance in Track 1 and 2. However, the com-
bination of two features does not necessarily improve the detection
results in Track 1 because of overfitting, especially for pitch-based
features + MFCC, even though their training loss is lower than
training by a single feature. A different case has been shown for
Track 2. The combination of CQCC and PLP achieves a significant
improvement in Track 2 detection, which receives the EER score of
7% for the GMM model and 32% for the RawNet2 model.

We do not perform a comparison between our observations
to ADD 2022 official baseline systems, because in [35], the EER
scores are obtained by evaluating baselines using the test sets. Our
observations show the detection performance of selected features
and classifiers on the adaptation sets.

5 ANALYSIS AND EVALUATION
ADD 2022 dataset covers realistic situations in audio clips, such
as with background noises and with several small fake segments
hidden in a real speech audio. Some of the features we selected for
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Figure 1: Distribution plots of the selected features. Green is
for real speech, and red represents the synthesized speech

experimenting such as PLP, CQCC perform well on this dataset
regarding the EER value due to their robustness to noise and their
consistency with human hearing system.

Besides the experiment in detection performance, we also com-
pute the distribution of feature values for the training set of ADD
dataset. For the real audio set and the synthesized audio set, we
extract all selected features separately and calculate the mean value
of each features. To show the difference between real audio and syn-
thesized audio, we plot the distribution of these calculated mean
value for each features. We select the distribution plots of four
features to show in Figure 1, which are chromagram, intensity, Mel-
spectrogram, and ZCR. In the distribution plots, the green shape
indicates the real audio data, while the red shape represents the
synthesized audios. The x-axis stands for the mean value, and the
y-axis represents the distribution density.

According to Figure 1, we observe that there are significant sta-
tistical differences between the real speeches and the synthesized
speeches, which can be extracted by the selected features and be uti-
lized to train the back-end classifiers to distinguish the synthesized
audio from the real one. Therefore, the distribution differences of
the features in Figure 1 give us an aspect of explanation for their
satisfying performance on fully fake audio detection tasks (Track
1), as Table 2 indicates. However, since there is an overlap in the
distribution of real and synthesized data, it provides potential diffi-
culties in detecting partial synthesized segments in the real audio.
The classifiers may be fooled by the real segments within the partial
fake audio clips, which results in poor detection performance in the
partial detection tasks (Track 2). For instance, for Mel-spectrogram
feature with RawNet2 back-end classifier, the EER scores for Track
1 and Track 2 are 19% and 93%, respectively. Similar observations
are found for the rest of the select features. Another reason that
the most of classifiers receive an EER higher than 50% in Track
2 is because the adaptation sets of Track 2 only contain partial
Deepfake audio samples. There is no fully real audio in the dataset
for testing.
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These statistical differences between real and fake audio dis-
tribution occur in the perceptual features as well, which causes
the perceptual difference in the human hearing system. This find-
ing suggests that besides the physical feature, the effectiveness of
perceptual features is also substantial in the development of Deep-
fake audio detection algorithms. For example, feeding intensity
and pitch-based feature to RawNet2 model directly receives the
EER score of 28% and 30% respectively. These experiment results
demonstrate that even a simple extraction of perceptual features
can have a significant detection performance.

In evaluating the detection performance of static MFCC, static
CQCC and their Δ2 coefficients, we observe that the effectiveness
of the delta operation does not have a significant improvement in
detection performance, especially when trainingwith deep learning-
based classifiers. Relatively, the Δ2 coefficients work better on GMM
model, which outperforms the corresponding static features in both
Track 1 and Track 2.

We also observe good performance for some features that are
able to extract the noise information, such as zero-crossing rate
and harmonics-to-noise ratio. This characteristic is reflected in the
detection performance of Track 1 which focuses on detecting fake
audios with background noises or music effects. The ZCR-RawNet2
model achieves 33% EER, while the HNR-RawNet2 model has an
EER score of 29%.

In terms of back-end classifiers, the two selected deep learning-
based classifiers outperform the GMM model for most of the fea-
tures in Track 1. It demonstrates the advance of deep learning-based
classifiers in revealing the underlying information provided by the
feature, and in being robust to the presence of noise, especially
for large-scale features like MFCC and chromagram. For instance,
the EER result of Chromagram-GMM, Chromagram-RawNet2, and
Chromagram-SE-Res2Net50 are 54%, 34%, and 32%, respectively.
Deep learning-based classifiers also have a better computational
performance in terms of training time. However, the deep learning-
based state-of-the-arts do not perform well on Track 2. They may
lack the ability to examine the partial fragments of an audio clip.

6 CONCLUSION
In this paper, we present a comprehensive study comparing the
performance of multiple features, including physical and perceptual
acoustic features, for both Track 1 and Track 2 of ADD challenges.
To the best of our knowledge, this is the first work to explore
a series of perceptual features and demonstrate their substantial
effectiveness in spoofing audio detection. For Track 1, PLP, as a
perceptual feature, receives the lowest EER score of 19% compared
to the rest of the selected features. For Track 2, most of the selected
features perform poorly. Strikingly, the combination of CQCC and
PLP brings a significant improvement in detection performance,
which receives the EER score of 7% with the GMM classifier and
32% with the RawNet2 classifier for Track 2. The comparison results
suggest that the perceptual features are useful to contribute to a
satisfying detection performance, and they should also be utilized
in the process of detecting Deepfakes.

Furthermore, this paper is an effect in investigating the underly-
ing characteristics of Deepfake audios. We perform statistical analy-
sis for each selected feature to emphasize the statistical differences

in its distribution between the real speech and Deepfake speech.
The distribution differences are also discovered in perceptual fea-
tures, which provides the explanation for the ability of perceptual
features to distinguish Deepfake speech from real speech. This anal-
ysis presents a potential direction of feature selection for the future
implementation of Deepfake detection models. For future work, we
will continue validating this characteristics analysis onto different
spoofing datasets. More work remains to be done to integrate the
signature characteristics that can distinguish real and Deepfake
audios into the structure of detection classifiers.
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